An Augmented Lagrangian Approach for Sparse Principal Component Analysis

نویسندگان

  • Zhaosong Lu
  • Yong Zhang
چکیده

Principal component analysis (PCA) is a widely used technique for data analysis and dimension reduction with numerous applications in science and engineering. However, the standard PCA suffers from the fact that the principal components (PCs) are usually linear combinations of all the original variables, and it is thus often difficult to interpret the PCs. To alleviate this drawback, various sparse PCA approaches were proposed in the literature [17, 7, 19, 32, 10, 29, 21, 9, 18]. Despite success in achieving sparsity, some important properties enjoyed by the standard PCA are lost in these methods such as uncorrelation of PCs and orthogonality of loading vectors. Also, the total explained variance that they attempt to maximize can be too optimistic. In this paper we propose a new formulation for sparse PCA, aiming at finding sparse and nearly uncorrelated PCs with orthogonal loading vectors while explaining as much of the total variance as possible. We also develop a novel augmented Lagrangian method for solving a class of nonsmooth constrained optimization problems, which is well suited for our formulation of sparse PCA. We show that it converges to a feasible point, and moreover under some regularity assumptions, it converges to a stationary point. Additionally, we propose two nonmonotone gradient methods for solving the augmented Lagrangian subproblems, and establish their global and local convergence. Finally, we compare our sparse PCA approach with several existing methods on synthetic [32], Pitprops [16], and gene expression data [8], respectively. The computational results demonstrate that the sparse PCs produced by our approach substantially outperform those by other methods in terms of total explained variance, correlation of PCs, and orthogonality of loading vectors. Moreover, the experiments on random data show that our method is capable of solving large-scale problems within a reasonable amount of time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Globally sparse PLS regression

Partial least squares (PLS) regression combines dimensionality reduction and prediction using a latent variable model. It provides better predictive ability than principle component analysis by taking into account both the independent and response variables in the dimension reduction procedure. However, PLS suffers from over-fitting problems for few samples but many variables. We formulate a ne...

متن کامل

Regularized Principal Component Analysis for Spatial Data

Abstract: In many atmospheric and earth sciences, it is of interest to identify dominant spatial patterns of variation based on data observed at p locations with n repeated measurements. While principal component analysis (PCA) is commonly applied to find the patterns, the eigenimages produced from PCA may be noisy or exhibit patterns that are not physically meaningful when p is large relative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2012